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Ⅰ. Introduction

The next generation of wireless communication,

known as 6G, is expected to experience significant

scalability, with a larger number of devices and

transmit antennas. Consequently, optimizing the

parameters in 6G systems poses substantial challenges[1].

Therefore, conventional methods of optimizing

wireless networks through mathematical analysis have

become increasingly difficult due to the growing

number of optimization variables, such as transmit

precoding and power allocation[2].

To address this issue, neural networks (NNs) have

gained popularity in recent years for enhancing the

physical layer of wireless communication. These

parameterized learning models approximate the

optimal solutions for optimization[3]. However, these

networks often employ general functions, like

perceptrons, in each layer, resulting in a high number

of trainable parameters, requiring significant amounts

of data and time to attain convergence during model

training[4].

To mitigate this problem, the concept of mapping

the iteration process of conventional iterative
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ABSTRACT

This paper introduces Quantum Deep Unfolding (QDU), a technique for optimizing power allocation and

transmit precoding in multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) systems.

Solving the optimization problem in such systems poses a significant challenge due to its high computational

complexity and non-convex nature, which increases the risk of being stuck at a local minimum. In order to

address this issue, QDU leverages an iterative algorithm and analytical derivation to enhance the sum rate

performance and training processes by optimizing power allocation and transmit precoding. The proposed

approach integrates a Quantum Neural Network (QNN) induced by an iterative deep unfolding algorithm with a

learning solution inspired by the training process. At each QDU layer, the iterative optimization involving the

Projected Gradient Descent (PGD) operator is unfolded to learn the crucial parameters. The objective of QDU is

to maximize the achievable sum rate while simultaneously reducing computational complexity.
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algorithms onto layer-wise NN structures has been

introduced in [5] and [6]. This mapping entails

unfolding the iteration process and incorporating

trainable parameters to improve training performance

with computationally lighter architectures. Deep

unfolding networks have emerged as useful

alternatives to model-driven NNs and are rapidly

gaining popularity in communication systems. In

particular, [5] proposed the use of deep unfolding to

optimize transmit precoding in MIMO systems.

Unlike conventional neural networks, deep unfolding

networks involve iterative algorithms in each layer

that employ analytical-based functions. For example,

an n-step iterative inference algorithm can be unfolded

into an l-layered NN structure with trainable

parameters determined by the model. Existing studies

on deep unfolding-based optimization typically utilize

classical computation. However, classical computation

has limitations in terms of computational complexity,

particularly for large-scale problems.

Furthermore, there is a growing interest in utilizing

Quantum Neural Networks (QNNs), which leverage

quantum computation to address the high

computational complexity associated with classical

approaches and reduce dimensionality[4,15]. QNNs can

also utilize quantum entanglement and superposition

to process information, potentially an offering

exponential speedup over classical NNs for specific

tasks[11]. Motivated by these factors, this study

employs the advantages of QNNs in a deep unfolding

architecture called QDU for optimizing

MIMO-NOMA systems.

Since optimization is a non-convex problem, the

gradient descent algorithm may converge

unexpectedly and find a local minimum. In [6], the

author presented deep unfolding neural networks

based on Projected Gradient Descent (PGD) for

MIMO detection, where the objective function is

determined by the constraints. Furthermore, PGD

incorporates a projection step to ensure that the

updated solution remains within the feasible region

defined by these constraints. This property of PGD

allows for effective optimization of power allocation,

transmit precoding, and other parameters while

satisfying the necessary constraints.

In this study, the PGD scheme is utilized in each

iteration of QDU, enabling faster training and

convergence[10].

Additionally, when it comes to the training process

of a QDU network, unsupervised learning presents a

viable option as it does not require the labeling of

data, unlike supervised learning[7].

To explore the potential of the aforementioned

methodologies, the main contributions of this study

can be summarized as follows: Firstly, QNNs are

employed to optimize transmit precoding and power

allocation in wireless systems. Secondly, a

model-driven deep unfolding network is considered,

incorporating analytical-based transmit precoding and

power allocation in each layer. Thirdly, the PGD

scheme is proposed in each iteration of the QDU

scheme to optimize MIMO-NOMA systems.

Notations: A complex Gaussian distribution is

indicated as , where m and s denotes

the mean and the variance, respectively. Let and

indicate element-wise multiplication and absolute

value, respectively. Consider and denote real and

complex numbers, respectively. The Kronecker

product is represented as ⊗. Moreover, H(.), R_y, and

M(.) denote the Hadamard gate, rotation on the

Y-axis, and quantum measurement operator,

respectively.

Ⅱ. System Model

This study considers a single-cell downlink in

MIMO-NOMA, as illustrated in Fig. 1. The base

station (BS) is equipped with N transmit antennas,

while each user has a single antenna. The downlink

channel assumes a Rayleigh fading scenario. The user

devices are grouped into m-th clusters, with each pair

of users receiving a superimposed NOMA signal. This

study focuses on power domain NOMA, where the

transmit power is divided among the user devices in

each group based on predefined power allocation.

Successive interference cancellation (SIC) is

employed to decode the designated message at each

receiving device.

Let NTx denote the number of transmit antennas at
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the BS. As shown in Fig. 1, to serve all users within

the m-th clusters, the BS utilizes a transmit precoding

matrix denoted by as precoding matrix

for the NOMA user groups. The NOMA power

allocation coefficient is denoted as . Let

≤1 and ≤1 be the normalized distance

between the strong user and the weak user,

respectively. Let be the channel

gain values for k-th user in m-th group, respectively[13].

It is assumed, that

The channel coefficient for can be expressed

as where is the

pathloss exponent [8]. Let be the noise

variance. The total power transmit is denoted as .

Thereafter, the received signal model at k-th users in

m-th cluster is given as [18]

(1)

where is the precoder array

for the k-th user in m-th group. Moreover, is

denoted the information signal of k-th user.

2.1 Objective
In the context of optimizing transmit precoding

and power allocation in MIMO-NOMA systems,

to objective is to maximize the achievable sum rate,

which can be presented as

(2a)

(2b)

(2c)

where are the average sum rate

in m-th cluster. Here, Eq. (2b) and Eq. (2c) are the

minimum allocated power constraint and minimum

data rate, respectively.

2.2 Achievable Rate
In general, the receive signal-to-interference-plus-

noise-ratio (SINR) for k-th users in m-th group can

be obtained as [9]

(3)

where indicates the signal-to-noise ratio of

the transmitter (SNR)[13,14]. The achievable rates for

k-th users in m-th cluster can be expressed as

(4)

Ⅲ. Proposed Scheme

In this section, the general concept of QDU

framework is summarized as follows:

3.1 QDU for MIMO-NOMA
The QDU algorithm, which is presented in Fig. 2,

is aimed at optimizing the transmit precoding and

power allocation, respectively. Set of inputs for deep

unfolding layers is the channel vector and

, where and are the transmit

precoding and power allocation, which induced the

QNN optimization, respectively. Afterwards, is

updated in the l-th layer during the training procedure.

In each iteration, the optimization is updated

through i) performing of gradient descent step,

which involves multiplying it by the negative gradient

of the cost function and ii) updating the PGD onto

the feasible set determined by constraint (12).

The architecture of the proposed QDU for

NOMA-MIMO consisting of cascading parts, which

can be described as follows:

1) Precoding part: The analytical-based precoding can

be expressed asFig. 1. Utilizing QDU to optimize a MIMO-NOMA
systems.
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(5)

where [5]. The resulting equivalent

channel is given by , which is

equal to the Frobenius norm of the actual MIMO

channel matrix Afterwards, the

optimization vector for the transmit precoding can be

calculated as

(6)

where are obtained from QNN the optimization

vector for .

2) NOMA Power Allocation: Initially, the analytical-

based power allocation can be expressed as

(7)

where and are the

NOMA power allocation coefficients for and

respectively [13]. Let , which is

obtained from the QNN, be the optimization variable

for Subsequently, can be calculated as follows:

(8)

In summary, the performance of conventional

training in QDU is constrained by the complexity and

difficulty of direct handling of limitations, such as the

restricted number of iterations relative to the number

of layers and neurons. However, QNNs are employed

to learn and optimize the step size parameter.

3.2 Quantum Variational Circuit
Figure 3 shows the QNN processes data using the

following method, where the encoding and decoding

steps are illustrated. Furthermore, the encoding
operation of the quantum variational circuit for QDU

can be expressed as [11]

(9)

where is the term used for

encoding[4,12]. The operation of is used for

pre-processing.

The trainable parameter resulting from the

aforementioned decoding operation function can be

expressed as:

Fig. 2. Proposed QDU framework for MIMO-NOMA.
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(10)

where denotes the number of shots taken in

the quantum measurement process. Let be

the measurement output state of QNN for and

, respectively.

3.3 Training Model
1) Projected gradient descent: To improve the

training convergence and satisfy the power

constraint in Eq. (2c), a PGD operator is included

in each l-th layer of QDU algorithm, as specified

in the formula[6,19]:

(11)

where Let be

the power constraint set, which solves the problem

in Eq. (3c). Subsequently, the k-th PGD update can

be expressed as

(12)

Afterwards, the update is projected as

.

2) Parameter shift rule: The partial gradient update

of the quantum node f with respect to the can

be expressed as

(13)

where denotes the parameter-shift coefficient.

However, focusing on , the gradient update can be

described as

(14)

Moreover, the loss calculation can be denoted by

, while the gradient of the loss

can be calculated as

(15)

To update the i-th parameter of QDU network,

denoted as , the following gradient descent

formula can be used[11]:

(16)

Fig. 3. Utilize quantum circuit based on the QNN operation.
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where is denoted as the learning rate

3) Loss Function: By adopting an unsupervised

learning methodology, the computation of the loss

function for QDU can be expressed as:

(17)

where is the achievable rate from

the i-th training iteration, describe in Eq. (2a).

Moreover, minimizing the loss function will lead to

a higher sum rate and better overall system

performance.

Ⅳ. Simulation and Result

Iterative training method is used in this simulation.

The following simulation scenario is considered. The

QNN operations were performed in

IBM Qiskit[17]. Consider the number of shot =

1024, number of dataset = 100 and number

of train = 1000. The user distance and channel

gain values are assumed as follows. Let us considers

two users for each NOMA group as denoted by

= 2. The normalized distance of both users as

= 0.5, respectively. Moreover, the number of layers

for the QDU is set to be = 4, where the learning

rate is denoted as = 0.01, was considered.

Employing Monte-Carlo simulation of 1000 trials, the

training result of the QDU achieved a similar result

compared to the conventional method based on

gradient descent.

Moreover, as shown in Fig. 4, the QDU achieved

sum rate was observed to be significantly increased

with respect to the SINR. The QDU achieved a similar

result to the conventional training model. However,

the QDU enforces the constraint after each iteration,

when the projection of QDU step is excessively

aggressive, causing the solution to be significantly

altered to satisfy the constraints. As a result, the

achieved sum rate could be lower compared to the

conventional training based gradient-descent method,

which does not directly enforce constraints during

optimization.

Ⅴ. Conclusion

This study proposed QDU framework to optimize

the power allocation and transmit precoding in

MIMO-NOMA systems, with steps summarized as

follows: Firstly, the statistical parameters of the

dataset are obtained as inputs. Secondly, the QNN

feedforward process involves obtaining trainable

parameter values from the measurement output of

QNN. Thirdly, the unfolded QDU algorithm is

presented, as shown in Fig 2, where each QDU layer

includes multiple sub-routines towards power

allocation and transmit precoding optimization.

Additionally, to prevent gradient exploitation and

Fig. 4. Achieved sum rate by employing QDU scheme,
compared to that conventional training method. During
training = 10 dB is considered.

Fig. 5. Convergence performance of the loss function
compared to that of conventional training (based on
gradient-descent method). During training = 10 dB is
considered. Here, both of the methods converge at
approximately = -13.5.
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satisfy the power constraint, each layer of the QDU

scheme utilizes the PGD operator. The simulation

results demonstrate that QDU outperforms the existing

iterative algorithms with reduced computational

complexity of the training process. Future work may

involve investigating other optimization factors, such

as massive MIMO-NOMA.
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